Задачи для самостоятельного решения

  1. Точка на гипотенузе, равноудаленная от обоих катетов, делит гипотенузу на отрезки длиной 30 и 40 см. Найти катеты треугольника.
  2. Медиана, проведенная к гипотенузе прямоугольного треугольника, равна т и делит прямой угол в отношении 1:2. Найти стороны треугольника.
  3. Длины сторон прямоугольного треугольника образуют арифметическую прогрессию с разностью 1 см. Найти длину гипотенузы.
  4. Определить острые углы прямоугольного треугольника, если медиана, проведенная к его гипотенузе, делит прямой угол в отношении 1:2.
  5. Катеты прямоугольного треугольника равны 9 и 12 см. Найти расстояние между точкой пересечения его биссектрис и точкой пересечения медиан.
  6. Найти биссектрисы острых углов прямоугольного треугольника с катетами 24 и 18 см.
  7. В прямоугольном треугольнике биссектриса острого угла делит противоположный катет на отрезки длиной 4 и 5 см. Определить площадь треугольника.
  8. Через вершину прямого угла прямоугольного треугольника с катетами 6 и 8 м проведен перпендикуляр к гипотенузе. Вычислить площади образовавшихся треугольников.
  9. В равнобедренном треугольнике с боковой стороной, равной 4 см, проведена медиана боковой стороны. Найти основание треугольника, если медиана равна 3 см.
  10. Найти длины сторон равнобедренного треугольника ABC с основанием АС, если известно, что длины его высот AN и ВМ равны соответственно n и m.
  11. В равнобедренном треугольнике основание и боковая сторона равны соответственно 5 и 20 см. Найти биссектрису угла при основании треугольника.
  12. Вычислить площадь равнобедренного треугольника, если длина высоты, проведенной к боковой стороне, равна 12 см, а длина основания равна 15 см.
  13. Найти площадь равнобедренного треугольника, если основание его равно а, а длина высоты, проведенной к основанию, равна длине отрезка, соединяющего середины основания и боковой стороны.
  14. Высота, проведенная к основанию равнобедренного треугольника, равна Н и вдвое больше своей проекции на боковую сторону. Найти площадь треугольника.
  15. Найти длины сторон АВ и АС треугольника ABC, если ВС= 8 см, а длины высот, проведенных к АС и ВС, равны соответственно 6,4 и 4 см.
  16. В треугольнике длины двух сторон составляют 6 и 3 см. Найти длину третьей стороны, если полусумма высот, проведенных к данным сторонам, равна третьей высоте.
  17. Длина основания треугольника равна 36 см. Прямая, параллельная основанию, делит площадь треугольника пополам. Найти длину отрезка этой прямой, заключенного между сторонами треугольника.
  18. На каждой медиане треугольника взята точка, делящая медиану в отношении 3:1, считая от вершины. Во сколько раз площадь треугольника с вершинами в этих трех точках меньше площади исходного треугольника?
  19. Прямая, параллельная основанию треугольника, делит его на части, площади которых относятся как 2:1. В каком отношении, считая от вершины, она делит боковые стороны?
  20. Основание треугольника равно 30 см, а боковые стороны 26 и 28 см. Высота разделена в отношении 2:3 (считая от вершины), и через точку деления проведена прямая, параллельная основанию. Определить площадь полученной при этом трапеции.

Доказать тригонометрические тождества 

1.
2.
3.
4.
5.
6.
7.